Name \qquad Hour \qquad Work-Energy Review/Practice Tes \dagger

Work-Energy Test: \qquad ≈ 70 \qquad pts
on \qquad Friday 12/11 \qquad

Concepts: (20 Multiple Choice and True/False)

1. What variables does PE depend on? If you double the height, what happens to the PE?
2. If you double the velocity, what happens to the KE? WHY?
3. What are the units of the following items:
energy, work, power, force, distance
4. The Joule is equal to what other unit? (use work equation to help) \qquad
5. What are these the definitions for?

Energy transferred by a force through a distance
Rate at which work is done
Push or a pull
Energy of position
Energy of motion
Ability to do work
6. What does conservation of energy state?
7. If you start with 8 J of $K E$ and lose 3 J of KE , how much PE should be gained? \qquad
8. When can you use the ay=Vfy-Viy/ Δt equation with projectiles?
9. Are Viy and Δy the same thing when using projectiles? \qquad
(So when you are looking for height...you can't stop after finding Viy!)
10. If you start at a height of 12 m and fall 8 m ... what is hi= \qquad , hf= \qquad $\Delta y=$ \qquad
11. How many watts are in a 24 hp engine?
12. You pull a sled with a force of 25 N at an angle of $55^{\circ} \mathrm{N}$ of E , and it moves a distance of 10 m . Find the work done. (Remember-it moves horizontally so you need Fx!)

Problems: (Short Answer) There will be 5 problems on the test...similar to these ones.

1. A 1 kg balloon car accelerates from 0 to $3 \mathrm{~m} / \mathrm{s}$ in 2.5 sec . Find its horsepower.

Name \qquad Hour \qquad Work-Energy Review/Practice Test
2. Rudolph (250 lbs) accidentally falls off a 11.5 m roof while delivering presents. After falling 6 m , he remembers he can fly! Find his velocity at this point using both conservation of energy and a 1-D motion equation.
$\Delta y=$ \qquad , hi= \qquad , hf= \qquad
Conservations of energy:
1-D motion equation:
3. A $\mathbf{2 5}$ gram pendulum is released from an initial height of 0.25 m . Calculate the velocity it will be traveling at the bottom of its swing. What is its kinetic energy?

4 A disc (15 grams) shot out of a Zoom-O at an angle travels 5.6 m in 2.66 sec . Calculate the potential energy at its maximum height.

